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Overview

o Like transfer learning is used in vision, pretrained model will enable
NLP tasks to have a basic understanding about the language and
then fine tune the model for specific tasks.

o They define two tasks for pretraining: masked language model(MLM)
and next sentence prediction(NSP)

o  Theyshowed tuning the BERT model for 11 different tasks and
showed that it gives best result in all of them.




Pre-training in NLP

»  Word embeddings are the basis of deep learning for NLP

»  Word embeddings (word2vec, GloVe) are often pre-trained on text
| corpus from co-occurrence statistics
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Contextual Representations

»  Problem: Word embeddings are applied in a context free manner
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ElImo: Context Matters

o ELMo gained its language understanding from being trained to predict the
next word in a sequence of words.

o trains a bi-directional LSTM - so that its language model doesn’t only have
a sense of the next word, but also the previous word.




Embedding of “stick” in “Let’s stick to” - Step #1
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Embedding of “stick” in “Let’s stick to” - Step #2

1- Concatenate hidden layers Forward Language Model Backward Language Model
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ELMo embedding of “stick” for this task in this context
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Attention With Many Heads
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Open Al GPT

o  OpenAl GPT use a left-to-right architecture, where every token can
only attend to previous tokens in the self-attention layers of the
Transformer

o Thedecoderisagood choice because it’s a natural choice for
language modeling (predicting the next word) since it’s built to mask
future tokens
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Problem with Previous Methods

»  Problem: Language models only use left context or right context, but
language understanding is bidirectional.

»  Why are LMs unidirectional?
»  Reason 1: Directionality is needed to generate a well-formed
probability distribution.
»  We don’t care about this.
» Reason 2: Words can “see themselves” in a bidirectional
encoder.




Unidirectional context
Build representation incrementally
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BERT (Ours)

OpenAl GPT




BERT: From Decoders to Encoders

Problem: Could we build a transformer-based model whose
language model looks both forward and backwards?
»  “We’ll use transformer encoders”

»  Problem continued: Everybody knows bidirectional conditioning
would allow each word to indirectly see itself in a multi-layered
context.




Masked LM

Solution: Mask out k% of the input words, and then predict the
masked words
»  We always use k=15%

store gallon
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the man went to the [MASK] to buy a [MASK] of milk

»  Too little masking: Too expensive to train

Too much masking: Not enough context
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Masked LM

Problem: Mask token never seen at fine-tuning

»  Solution: 15% of the words to predict, but don’t replace with [MASK] 100%
of the time. Instead:

»  80% of the time, replace with [MASK]
» wentto the store > went to the [MASK]

»  10% of the time, replace random word
» wentto the store > went to the running

»  10% of the time, keep same
»  wentto the store > went to the store




Next Sentence Prediction

»  To learn relationships between sentences, predict whether Sentence
B is actual sentence that proceeds Sentence A, or arandom

sentence
Sentence A = The man went to the store. Sentence A = The man went to the store.
Sentence B = He bought a gallon of milk. Sentence B = Penguins are flightless.

Label = IsNextSentence Label = NotNextSentence
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Input Representation

Use 30,000 WordPiece vocabulary on input. Each token is sum of
three embeddings. Single sequence is much more efficient.
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Model Architecture

Multi-headed self attention
o Models context

Feed-forward layers
o Computes non-linear hierarchical features

Layer norm and residuals
o Makes training deep networks healthy

Positional embeddings
o Allows model to learn relative positioning

Transformer encoder
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Loss Function

When training the BERT model, Masked LM and Next Sentence
Prediction are trained together, with the goal of minimizing the
combined loss function of the two strategies.

BERT uses cross entropy loss as its loss function.




BERT Fine-Tuning
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Fine-Tune BERT for
Classification
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Fine-Tune BERT for SQuaD
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BERT introduces a start vector and an end vector.

The probability of each word being the start-word is
calculated by taking a dot product between the final
embedding of the word and the start vector, followed by a
softmax over all the words.

The word with the highest probability value is considered.



Transformer Layer 12

Transformer Layer 2

Transformer Layer 1

BERT large has 340 M  params total

start

This length 768 vector is the
weights for the start token
classifier.

The same weights are
applied to every position.



Fine-Tune BERT for
Named Entity Recognition
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Results
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https://nlp.stanford.edu/seminar/details/jdevlin.pdf

Effect of Pre-training Task

Masked LM (compared to left-to-

right LM) is very important on Effect of Pre-training Task
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»  Left-to-right model does very
poorly on word-level task
(SQUAD), although this is
mitigated by BiLSTM !
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Effect of Directionality and Training Time

»  Masked LM takes slightly longer to converge because we only predict
15% instead of 100%. But absolute results are much better almost
immediately
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Effect of Model Size

»  Big models help a lot. Going from 110M -> 340M params helps even
on datasets with 3,600 labeled examples.
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Effect of Masking Strategy
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THANKS!

Any questions?




